Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Performance Analysis of Hybrid Jet Impingement/Microchannel Cooling for Concentrated Photovoltaic (CPV) Cells

[+] Author Affiliations
Afzal Husain, Mohd Ariz, Nasser A. Al-Azri, Nabeel Z. H. Al-Rawahi

Sultan Qaboos University, Muscat, Oman

Mohd. Z. Ansari

PDPM IIITDM, Jabalpur, India

Paper No. ICNMM2016-7931, pp. V001T05A001; 7 pages
  • ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting
  • ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5034-3
  • Copyright © 2016 by ASME


The increase in the CPV temperature significantly reduces the efficiency of CPV system. To maintain the CPV temperature under a permissible limit and to utilize the unused heat from the CPVs, an efficient cooling and transportation of coolant is necessary in the system. The present study proposes a new design of hybrid jet impingements/microchannels heat sink with pillars for cooling densely packed PV cells under high concentration. A three-dimensional numerical model was constructed to investigate the thermal performance under steady state, incompressible and laminar flow. A constant heat flux was applied at the base of the substrate to imitate heated CPV surface. The effect of two dimensionless variables, i.e., ratios of standoff (distance from the nozzle exit to impingement surface) to jet diameter and jet pitch to jet diameter was investigated at several flow conditions. The performance of hybrid heat sink was investigated in terms of heat transfer coefficient, pressure-drop, overall thermal resistance and pumping power. The characteristic relationship between the overall thermal resistance and the pumping power was presented which showed an optimum design corresponding to S/Dj = 12 having lower overall thermal resistance and lower pumping power.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In