0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Study of the Pressure Drop in Transonic Micronozzle Flows Across Multiple Flow Regimes

[+] Author Affiliations
Juan E. Gomez Herrera, Rodion Groll

University of Bremen, Bremen, Germany

Paper No. ICNMM2016-7919, pp. V001T01A001; 11 pages
doi:10.1115/ICNMM2016-7919
From:
  • ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting
  • ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5034-3
  • Copyright © 2016 by ASME

abstract

In the present work, the behavior of a millimeter-scale cold-gas thruster operating with the noble gases neon, argon, krypton and xenon is investigated both experimentally and numerically. In the experimental setup, the cold-gas thruster operates under vacuum conditions and the pressure drop in the system is measured at several fixed mass flow rates ranging between 0.178 mg/s and 3.568 mg/s. The estimated Knudsen numbers for all the studied cases are above the continuum flow limit 0.01. At the higher mass flow rates the studied flows are in the slip-flow regime while at the lower mass flow rates, the transition regime is reached. The experimental pressure results are compared with numerical simulations based on the compressible Navier-Stokes equations with a no-slip boundary condition and with simulations based on the Direct Simulation Monte Carlo (DSMC) method. At high values of Kn, the pressure results of the Navier-Stokes based simulations show high deviations from both the DSMC and the experimental results. This is a consequence of the discrepancy between the no-slip boundary condition used for the Navier-Stokes simulations and gas rarefaction effects in the micronozzle becoming dominant at the lower mass flow rates.

Based on the comparison between the experimental results and the Navier-Stokes based simulations, a Knudsen-dependent correcting function with four gas-independent accommodation coefficients is developed. The accommodation coefficients allow the accurate estimation of the actual pressure drop along the nozzle based on usually computationally inexpensive Navier-Stokes simulations with no-slip boundary conditions. The flexibility of the proposed approach is advantageous for the study of experimental setups operating at a large range of mass flow rates, where several flow regimes might exist, provided that a rigorous numerical distinction between continuum, slip-flow and transition regime is not essential.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In