Full Content is available to subscribers

Subscribe/Learn More  >

A Study on Superheat Utilization of Extraction Steam in a 1000MW Double Reheat Ultra-Supercritical Unit

[+] Author Affiliations
Weiliang Wang, Hai Zhang, Junfu Lv, Weidou Ni

Tsinghua University, Beijing, China

Yongsheng Li, Jianmin Liu

Guodian Science and Technology Research Institute, Nanjing, China

Paper No. POWER2016-59129, pp. V001T09A003; 7 pages
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME


The world’s first 1000MW double reheat ultrasupercritical unit has been in operation since September 25th, 2015 in Taizhou, China. The thermal efficiency at turbine heat-rate acceptance (THA) condition is around 51%, which is the highest among all condensing units in coal-fired power plants around the world. However, the resultant superheat degree of the extraction steam is relatively high, leading to a large temperature difference in heat transfer process in the regenerative system, thereby a great exergy loss.

In order to utilize the superheat of turbine bleeds more effectively, we present a scheme by employing an outer steam cooler (OSC) after the last high pressure heater in series to use the superheat to heat the feed water. Based on the newly installed unit in Taizhou, we examine the energy saving effect of the superheat utilization of different bleeds and their possible combinations respectively. The influencing factors of the mass flow rate, superheat, and effective superheat of the extraction steam are studied.

Thermodynamic analyses revealed that the second extraction steam has not only high effective superheat, but also large mass flow rate, so in the overall efficiency improvement it ranks first and the third extraction steam ranks second. Although the fourth extraction steam has the largest superheat, it ranks third as the result of relatively lower mass flow rate. It was found that at nominal load, by adopting OSC’s to utilize the superheat of the second to sixth extraction steam, temperature of the feed water can increase by 8.1 °C, 3.5 °C, 2.6 °C, 1.1 °C, and 1 °C respectively, and the net coal consumption reduces by 0.73g/kWh, 0.47g/kWh, 0.40g/kWh, 0.21g/kWh and 0.22g/kWh accordingly.

Consequently, three possible schemes are recommended for future design: one is to adopt one OSC to utilize the superheat of the second extraction steam, in return of 8.1°C increment in feed water temperature and 0.73g/kWh reduction of the net coal consumption; the second is to adopt two OSC’s to utilize the superheat of the second and third extraction steam at the same time, in return of 11.4 °C increment in feed water temperature and 1.21g/kWh reduction of the net coal consumption; and the last is to apply three OSC’s to utilize the superheat of the second to the fourth extraction steam simultaneously, to achieve 13.9°C increment in feed water temperature, and 1.62g/kWh reduction of the net coal consumption.

Copyright © 2016 by ASME
Topics: Steam



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In