0

Full Content is available to subscribers

Subscribe/Learn More  >

An Integrated Design Approach of Local Control System of a Linear Drive Single Facet Heliostat

[+] Author Affiliations
M. M. Nageb, A. A. El-Samahy, M. A. Rady, R. H. Abd El-Hamid

Helwan University, Helwan, Egypt

A. M. A. Amin

Academy of Scientific Research & Technology, Cairo, Egypt

David Olasolo

Fundacion Tekniker, Eibar, Spain

Paper No. POWER2016-59375, pp. V001T08A011; 10 pages
doi:10.1115/POWER2016-59375
From:
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME

abstract

In a central receiver solar power plant, heliostats are arranged with respect to the central receiver so as to reflect the rays from the sun onto the power tower with high precision by tracking the sun in both the azimuth and elevation directions. The master control system of a solar power plant consists of different levels. The first level is local control; it takes care of the positioning of the heliostats when the aiming point and the time are given to the system, and informs upper level about the status of the heliostats field. The second logic level makes some important dispatch calculations of heliostats field. The most popular linear two-axis local driving system of heliostat consists of two linear driving actuators, the driving mechanism with rotary joints, and the controller. Traditional methods for heliostat design are often based on a sequential approach in which the mechanical structure is designed first and then the control system is advised. In order to reach the optimal design of heliostats, an integrated design approach that concurrently considers the interactions between the mechanical and control subsystems is necessary. In this article, an integrated design methodology of heliostat drive system is presented.

The methodology is based on modeling and simulation. The dynamic models that describe the behavior of the mechanical and control components are presented. These models involve mechanical and control design variables such as the motor parameters, power screw (including back lash), heliostat mass, load forces, and wind forces. Matlab, Solidwork, and Simulink are chosen to apply PID tracking control to heliostats, due to the ability to arbitrarily model complex mechanical systems, directly import properly constructed, third-party 3D CAD models, simulate integrated control, handle a variety of robotics nomenclature, and other features. The present methodology is employed for integrated design of a single facet small size heliostat with mirror area of 3 m2.The methods described in this article also show a way to rapidly simulate novel and complex heliostat geometries. Analysis of the heliostat drive system performance and dynamic characteristics according to mechanical and control design variables is conducted for the purpose of control system design and performance optimization. The drive system performance is evaluated in terms of positioning tracking errors, system response, and control system behavior. It is shown that the mechanical characteristics of the ball power screw actuator such as ball-screw diameter, lead, overall flexibility, stiffness, backlash, and inertia significantly influence the performance of drive system.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In