Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Power Consumption of an Electrodynamic Dust Shield to Clean Solar Panels

[+] Author Affiliations
Jennifer K. W. Chesnutt, Chang-Yu Wu

University of Florida, Gainesville, FL

Bing Guo

Texas A&M University at Qatar, Doha, Qatar

Paper No. POWER2016-59371, pp. V001T08A010; 7 pages
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME


Substantial time and money have been directed toward photovoltaic solar power. However, mitigation of dust on solar panels has been largely neglected. The objective of this research was to determine the performance and power consumption of an electrodynamic dust shield (EDS) to clean solar panels as a function of dust particle size. We utilized a discrete element method to computationally simulate the transport, collision, and electrodynamic interactions of particles subjected to electrodynamic waves generated by an EDS. The EDS consisted of electrodes embedded within a dielectric material. 1250 monodisperse particles with diameters of 30–50 μm were simulated. In the absence of particle-particle interactions, an increase in diameter increased particle transport distance due to increased particle charge. However, inclusion of particle-particle collisions produced interactions such that an intermediate diameter yielded the smallest transport distance. Average power required to lift a particle off the surface was smallest with the smallest particle; however, power requirement decreased with diameter with a constant loading of particles on the EDS. Calculated from our simulation data, power consumption per unit area of an experimental EDS agreed with previous experimental studies. Our study elucidated important aspects of EDS operation and power consumption to mitigate dust on solar panels.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In