Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Novel Design of Savonius Blade Geometries for Vertical-Axis Wind Turbines

[+] Author Affiliations
Mosfequr Rahman, Travis Salyers, Emile Maroha, Sirajus Salekeen

Georgia Southern University, Statesboro, GA

Mahbub Ahmed

Southern Arkansas University, Magnolia, AR

Paper No. POWER2016-59210, pp. V001T08A005; 15 pages
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME


With the increasing demand for clean, renewable energy sources, vertical-axis wind turbine (VAWT) research has gained considerable interest. The technology is primarily used for small-scale power applications in environments with unsteady wind conditions, such as urban locations. For this type of turbine the most important features are self-starting characteristics and energy conversion efficiency. For the Savonius type rotor, performance is increased by reducing drag losses on the advancing blades. The present study addresses the numerical verification of the performance of new designs for drag-driven VAWTs.

Two new models were created using SolidWorks along with a standard Savonius model consisting of semicircular blades for benchmarking. All models were designed with the same swept area for comparison. 3D numerical simulation was completed using ANSYS FLUENT. Static conditions were first solved with a moving reference frame (MRF). The results from the MRF simulations were then used to initialize the transient solvers using sliding mesh models (SMM). 3D pressure distributions on the moving blades for each model were analyzed. From inputs of wind and rotational speed, torque values and coefficients of moment were reported. Each model was tested over a range of tip-speed ratios, and power coefficients were calculated. Results were compared to a standard Savonius VAWT, and increased maximum power coefficient was achieved with the new blade geometries.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In