0

Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Study on the Performance of Fixed Oscillating Water Column Wave Energy Converter at Steep Waves

[+] Author Affiliations
Morteza Anbarsooz, Ali Faramarzi

Quchan University of Advanced Technology, Quchan, Iran

Amirmahdi Ghasemi

Worcester Polytechnic Institute, Worcester, MA

Paper No. POWER2016-59142, pp. V001T08A003; 7 pages
doi:10.1115/POWER2016-59142
From:
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME

abstract

In the current study, a fully nonlinear two-dimensional numerical wave tank is developed using the commercial CFD software, Ansys Fluent 15.0, in order to study the absorption characteristics of an OWC at linear and highly nonlinear steep waves. The two-phase Volume-Of-Fluid (VOF) method is employed to predict the water free surface evolution. The numerical results are first validated against the available analytical data in the literature. The good agreement between the numerical results and those of analytics, revealed the capability of the developed numerical tank to study the performance of the OWC. Next, the simulations are performed for strongly nonlinear waves, up to the wave steepness of 0.069 (H/L=0.069), where H is the wave height and L is the wave length. The optimum pneumatic damping of the air turbine at such strongly steep and nonlinear waves is determined. Results show that the absorption efficiency of the OWC decreases considerably as the wave height increases. Moreover, the maximum wave energy absorption efficiency for the highly nonlinear waves occurs at a pneumatic damping coefficient lower than that of the linear theory.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In