Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Exploration of a Small Scale Pneumatically Pumped Thermal Storage System

[+] Author Affiliations
Inri Rodriguez

University of California, San Diego, La Jolla, CA

Jesus Cerda, Daniel S. Codd

University of San Diego, San Diego, CA

Paper No. POWER2016-59566, pp. V001T06A002; 9 pages
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME


A prototype water-glycerol two tank storage system was designed to simulate the fluidic properties of a high temperature molten salt system while allowing for room temperature testing of a low cost, small scale pneumatically pumped thermal storage system for use in concentrated solar power (CSP) applications. Pressurized air is metered into a primary heat transfer fluid (HTF) storage tank; the airflow displaces the HTF through a 3D printed prototype thermoplate receiver and into a secondary storage tank to be dispatched in order to drive a heat engine during peak demand times. A microcontroller was programmed to use pulse-width modulation (PWM) to regulate air flow via an air solenoid. At a constant frequency of 10Hz, it was found that the lowest pressure drops and the slowest flowrates across the receiver occurred at low duty cycles of 15% and 20% and low inlet air pressures of 124 and 207 kPa. However, the data also suggested the possibility of slug flow. Replacement equipment and design modifications are suggested for further analysis and high temperature experiments. Nevertheless, testing demonstrated the feasibility of pneumatic pumping for small systems.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In