0

Full Content is available to subscribers

Subscribe/Learn More  >

Evacuation Systems for Steam Surface Condensers: Vacuum Pumps or Steam Jet Air Ejectors?

[+] Author Affiliations
Ranga Nadig

Maarky Thermal Systems Inc., Cherry Hill, NJ

Paper No. POWER2016-59067, pp. V001T04A002; 9 pages
doi:10.1115/POWER2016-59067
From:
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME

abstract

In a steam power plant, steam from the steam turbine is condensed in a water cooled or air cooled condenser that operates under vacuum. The condensing capacity of the condenser is impaired by the presence of air. Air leaks into the condenser from flanged connections, turbine seals, valves and other equipment connected to the condenser. The air tends to collect in the condenser and impact its condensing capability. This trapped air has to be continuously evacuated to preserve the condensing capacity of the condenser.

The air can be evacuated from the condenser using the steam jet air ejector system or the vacuum pump system. The vacuum pump is driven by an electrical motor. The steam jet air ejector is driven by motive steam. In certain low suction pressure applications, a hybrid system consisting of a steam jet air ejector and vacuum pump or a three stage ejector system is used for evacuating the air from the condenser.

The evacuation packages perform two distinct services namely hogging and holding. During startup, or hogging operation, the evacuation system removes air from the steam space of the condenser and steam turbine. The pressure in the steam space is reduced from atmospheric pressure to typically 10.0” HgA or a pressure specified by the steam turbine supplier in about 30 minutes. During normal or “holding operation” with the steam turbine in service, the evacuation system removes a specified amount of air from the condenser.

The suitability of vacuum pump or steam jet air ejector systems for a given application depends on the availability of motive steam during startup, the costs associated with the usage of steam or electricity and the preferences of the end user. Each system has its advantages and disadvantages. In each case, there are numerous design details that must be addressed to ensure that the selected system meets the evacuation needs for the condenser.

This paper examines the various configurations of evacuation systems and discusses their suitability for the wide ranging operating scenarios in the condenser. A broad background on the design and operation of the evacuation system is included to assist the end user in making the proper selection of the evacuation system.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In