Full Content is available to subscribers

Subscribe/Learn More  >

Indirect Combustion Technology With Renewable Non-Edible Transesterified Oil Feedstock

[+] Author Affiliations
Valentin Soloiu, Jose Moncada, Tyler Naes, Martin Muiños, Spencer Harp

Georgia Southern University, Statesboro, GA

Paper No. POWER2016-59398, pp. V001T03A008; 11 pages
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME


This investigation focused on the combustion and performance of an indirect injection (IDI) diesel engine powered by a non-edible biodiesel blend, Brassica Carinata. This oilseed has become an attractive non-edible feedstock for biodiesel in the United States, given potential agronomical advantages. A small bore, single cylinder IDI engine was run at 2000 rpm and 5.5 bar indicated mean effective pressure (IMEP) using ultra-low sulfur diesel #2 (ULSD#2) and compared with C50, a 50% Carinata biodiesel-ULSD#2 blend (by mass). The apparent heat release for C50 reached a maximum of 22.04 J/deg which was 6.3 % lower and peaked 1.80 CAD before ULSD#2. The radiation and convection heat fluxes had similar maximum values of 0.62 MW/m2 and 1.34 MW/m2, respectively. The brake specific fuel consumption (BSFC) of C50 was 211.05 g/kWh, which was 9% higher than for ULSD#2. The mechanical efficiency was maintained relatively constant at 55% while the indicated thermal efficiency of the engine reached 59%. Both fuels produced similar nitrogen oxide (NOx) emissions with ULSD#2 and C50 producing 2.29 g/kWh and 2.23 g/kWh, respectively. The results indicate that the IDI engine can optimally work with concentrations up to 50% biodiesel.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In