0

Full Content is available to subscribers

Subscribe/Learn More  >

Fuel Property Effects on the Fate of Volume Distributed Combustion

[+] Author Affiliations
Ahmed E. E. Khalil, Ashwani K. Gupta

University of Maryland, College Park, MD

Paper No. POWER2016-59050, pp. V001T03A006; 14 pages
doi:10.1115/POWER2016-59050
From:
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME

abstract

Colorless Distributed Combustion (CDC) has been shown to provide singular benefits on ultra-low pollutants emission, enhanced stability and thermal field uniformity. To achieve CDC conditions, fuel-air mixture must be properly prepared and mixed with hot reactive gases from within the combustor prior to the mixture ignition. Hot reactive gases reduce the oxygen concentration in the mixture while increasing its temperature. In this paper, the impact of fuel type (methane, propane, and hydrogen enriched methane) on achieving distributed combustion is investigated. A mixture of nitrogen and carbon dioxide was mixed to simulate the hot recirculated gases at different temperatures using normal air upstream of the combustor. Increasing the amounts of nitrogen and carbon dioxide reduced the oxygen concentration within the combustor. Distributed combustion was identified through OH* chemiluminescence distribution across the combustor. For methane, this oxygen concentration varied between 13.8% and 11.2% (depending on the mixture temperature) with some 85% reduction in NO emissions as compared to that without entrainment. Similar behavior was demonstrated with propane and hydrogen enriched methane, albeit at a lower oxygen concentration (13.7%–11.6% and 12.2%–10.5%), to result in 94% and 92% reduction in NO emission, respectively. The inlet gas temperature was varied between 300K and 750K. Experimental data using a variety of fuels showed NO emissions of 1 PPM or less. Analysis and extrapolation of obtained data suggest that distributed combustion can be achieved at an oxygen concentration of 9.5% for hot reactive entrained gases having a temperature of 1800K. This value may be used as a guideline to achieve distributed combustion with ultra-low emission.

Copyright © 2016 by ASME
Topics: Combustion , Fuels

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In