0

Full Content is available to subscribers

Subscribe/Learn More  >

Role of Fuel Injection Scheme in a High Intensity Combustor

[+] Author Affiliations
Ahmed O. Said, Ashwani K. Gupta

University of Maryland, College Park, MD

Paper No. POWER2016-59043, pp. V001T03A005; 9 pages
doi:10.1115/POWER2016-59043
From:
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME

abstract

Fuel injection at two locations in a combustor using premixed, partially pre-mixed and non-premixed schemes has been explored for improved distributed combustion. The effect of dual location fuel injection to the combustor is examined and the results compared from single fuel injection. Focus of dual and single injection scheme was on enhancing reaction zone uniformity in the combustor. A cylindrical combustor at a combustion intensity of 36MW/m3.atm and heat load of 6.25 kW was used. Three different schemes of dual location fuel injection with different proportions of fuel injected from each injector were investigated using methane as the fuel. The role of fuel distribution between the two injection ports using constant air flow rate to the combustor at room temperature was examined on reaction zone distribution and pollutants emission. Three different equivalence ratios of 0.6, 0.7 and 0.8 were examined with different fuel distributions between the two injectors to the combustor at a constant overall thermal load. The results showed lower emission with dual location fuel injection as compared to single location. Dual location fuel injection showed 48% NO reduction with 90% of the total fuel from injector 1 while only 13% reduction was achieved with 80% of the fuel injection from this location. . OH* Chemiluminescene intensity distribution within the combustor showed that under favorable fuel injection condition, the reaction zone shifted downstream to allow longer fuel mixture preparation time prior to ignition. The longer mixing time resulted in improved mixture preparation and lower emissions. The OH* Chemiluminescene intensity distribution with fuel introduced through two injectors showed improved OH* distribution in the combustor. Improved mixture preparation enhanced reaction distribution in the combustor and lower emission.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In