Full Content is available to subscribers

Subscribe/Learn More  >

Theoretical Study on Chemical-Kinetic Characteristics of Oxy-Coal Mild Combustion

[+] Author Affiliations
Ruochen Liu, Enke An, Kun Wu

Tongji University, Shanghai, China

Paper No. POWER2016-59032, pp. V001T03A002; 8 pages
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME


The chemical-kinetic characteristics of oxy-coal MILD combustion under different initial temperature and oxygen concentration were studied numerically. Aromatic benzene was considered representative for coal molecule. A unique reaction pathway under low oxygen concentration was obtained, the activation energy and reaction rate constant of involved elementary reactions were calculated through classic transition state theory (TST). The results show that low oxygen concentration and high temperature is advantageous for thickening flame front as well as slowing down flame propagation; as oxygen concentration and temperature increase, the global activation energy increases with greater slope; the decomposition of C5H5 dominates under high oxygen concentration, while the decomposition and oxidation of C5H5 become equally important as oxygen concentration decreases, leading to a new pathway that the complexity of overall chemical reactions develops; the radical CH2CHO is easily trigged under low oxygen concentration, its decomposition reaction dominates in the unique pathway C5H5→C5H4O→c-C4H5CH2CHO→CH3 due to larger activation energy, where more CO escapes. The simulation results have theoretical referencing value, laying foundations for the further practical work.

Copyright © 2016 by ASME
Topics: Combustion , Coal



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In