0

Full Content is available to subscribers

Subscribe/Learn More  >

Design Optimization of T-Root Geometry of a Gas Engine HP Compressor Rotor Blade for Lifing the Blade Against Fretting Failure

[+] Author Affiliations
Kumar K. Gowda

Vivekananda Institute of Technology, Bangalore, India

S. L. Ajit Prasad

P.E.S. College of Engineering, Mandya, India

Vinayaka Nagarajaiah

National Institute of Technology Durgapur, West Bengal, India

Paper No. POWER2016-59331, pp. V001T02A005; 7 pages
doi:10.1115/POWER2016-59331
From:
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME

abstract

Stress Concentration Factor (SCF) is significant in machine elements as it gives rise to localised stresses which lead to peak stresses introducing cracks which propagate further and hence the component fails before the desired design life. Turbine blades are subjected to high centrifugal stresses and vibratory stresses in a Gas Engine HP Rotor. The vibratory stresses arise due to air wake flow excitations called Nozzle Passing Frequency (NPF). Hence, Turbomachinery industry calls for an optimum structurally rigid blade root geometry. An optimum blade root was defined, as a root with practical geometry, which when loaded returns the minimum fillet SCF. In the present work an approach has been done for design optimization of fillet stresses at sharp edges of T-root blade, optimization of platform dimensions, shank dimensions, root land dimensions and to ensure that stress distribution is uniformly spread along the filleted width of the root land on both sides of the blade, which otherwise will lead to crack initiation, propagation and hence, fretting failure at blade root lands. This may further lead to blade lift and effect on stage and overall gas engine failure over a period of cycles. Hence, a special attention is made on SCF of the T root -blade which fails and to guarantee for safe and reliable operation under all possible service conditions. Finite Element Analysis (FEA) is used to determine the fillet stresses and Peterson’s SCF chart is effectively utilized to modify the blade root. The root is modified due to the difficulty in manufacturing the butting surface of the tang which grips the blade to the disk crowns having small contact area. The blade height is suitably designed using Campbell diagram by ensuring the working frequency is well within 6e excitations for the specified operating speeds. Hence, increasing the life of the HP compressor blade.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In