0

Full Content is available to subscribers

Subscribe/Learn More  >

Efficiency Optimization of Four Gas Turbine Power Plant Configurations

[+] Author Affiliations
Sultan Almodarra, Abdullah Alabdulkarem

King Saud University, Riyadh, Saudi Arabia

Paper No. POWER2016-59157, pp. V001T02A002; 6 pages
doi:10.1115/POWER2016-59157
From:
  • ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2016 Power Conference
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Power Division, Advanced Energy Systems Division, Solar Energy Division, Nuclear Engineering Division
  • ISBN: 978-0-7918-5021-3
  • Copyright © 2016 by ASME

abstract

Gas turbine power plants fueled by natural gas are common due to their quick start-up operation and low emissions compared with steam power plants that are directly fired. However, the efficiency of basic gas turbine power plant is considered low. Any improvement in the efficiency would result in fuel savings as well as reduction in CO2 emissions. One way to improve the efficiency is to utilize exhaust gas waste heat. Two waste heat utilization options were considered. The first option was to run a steam power plant (i.e. combined cycle power plant) while the other option was to use a regenerator which reduces the size of the combustion chamber. The regenerator utilizes the waste heat to preheat the compressed air before the combustion chamber. In addition, the efficiency can be improved with compressor intercooling and turbine reheating. In this paper, four gas turbine power plant configurations were investigated and optimized to find the maximum possible efficiency for each configuration. The configurations are (1) basic gas turbine, (2) combined cycle, (3) advanced combined cycle and (4) gas turbine with regenerator, intercooler and reheater. The power plants were modeled in EES software and the basic model was validated against vendor’s data (GE E-class gas turbine Model 7E) with good agreement. Maximum discrepancy was only 3%. The optimization was carried out using conjugate directions method and improvements in the baseline design were as high as 25%. The paper presents the modeling work, baseline designs, optimization and analysis of the optimization results using T-s diagrams. The efficiency of the optimized configurations varied from 49% up 65%.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In