0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermodynamic Analysis of an Advanced Solar-Assisted Compressed Air Energy Storage System

[+] Author Affiliations
Kent Udell, Michael Beeman

University of Utah, Salt Lake City, UT

Paper No. ES2016-59314, pp. V002T01A006; 8 pages
doi:10.1115/ES2016-59314
From:
  • ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 2: ASME 2016 Energy Storage Forum
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5023-7
  • Copyright © 2016 by ASME

abstract

The performance of CAES is evaluated for various configurations, with and without thermal energy storage. First, a conventional compressed air energy storage process is modeled using a time series iterative forward differencing method to simulate the round trip efficiency, exergy storage, cavern temperatures and pressures, and the gas expander exit temperature of a CAES plant. The computational model was validated experimentally by comparing trended data of the compression cycle of a 280 HP Gardener-Denver tandem horizontal two-stage compressor to computational results. It was found that the process of cooling the compressors resulted in a large exergy loss and the inefficiencies of the expanders lead to higher temperature gas being exhausted back to ambient pressures. Second, Advanced Adiabatic Compressed Air Energy Storage (AACAES) was simulated to study the effectiveness of storing the thermal energy removed from the compressors to be added to the compressed air as it enters the expanders at a later time. Third, the concept of increasing the capacity of the thermal energy storage systems to allow recharge with concentrated solar heat was explored. It was found that the thermal efficiency of converting the solar thermal energy to power would be high (> 60%). Further, the expander exhaust temperature and exergy are high (> 500 K), implying that additional waste heat energy recovery will be possible. Taken together, the results of this study show that an integrated, high efficiency, on-demand, water-free, solar energy delivery system is possible if combined with an AACAES system.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In