Full Content is available to subscribers

Subscribe/Learn More  >

Lubricant Free Foil Bearings Pave Way to Highly Efficient and Reliable Flywheel Energy Storage System

[+] Author Affiliations
Hooshang Heshmat, James F. Walton, II

Mohawk Innovative Technology, Inc., Albany, NY

Paper No. ES2016-59350, pp. V001T05A006; 12 pages
  • ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5022-0
  • Copyright © 2016 by ASME


Advanced compliant foil bearings capable of operating in low ambient pressures associated with soft vacuum are now paving the way to a new type of flywheel energy storage system. Many conventional flywheel energy storage system design approaches use active magnetic bearings with backup bearing technologies to meet the need for high speed operation in a low ambient pressure environment. Low ambient pressures are needed to overcome the power loss limitations associated with windage at high surface speeds. However, bearing technologies that rely on active control tend to be large, are dynamically soft which necessitates backup bearings and require a power supply which consumes some of the stored power to maintain rotor levitation.

In this paper the authors will demonstrate both theoretically and experimentally the ability of advanced 5th generation compliant foil bearings to support large flywheel rotors weighing in excess of 900 N and which can operate to speeds in excess of 40,000 rpm. Testing conducted at pressures as low as 7 kPa demonstrates the ability of foil bearings to operate in low ambient pressures consistent with flywheel energy storage system needs for low windage loss. The authors will also present a hypothesis and the mechanisms involved in a hydrodynamic phenomenon that allows a foil bearing to operate successfully when the mean free path of the air molecules is exceedingly large due to low ambient pressures.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In