Full Content is available to subscribers

Subscribe/Learn More  >

Self-Sufficiency in an MCHP System Based on Local Demand and Supply Analysis

[+] Author Affiliations
Christoph D. Ummenhofer, John Olsen, John Page

University of New South Wales, Sydney, Australia

Tim Roediger

University of Applied Sciences Landshut, Landshut, Germany

Paper No. ES2016-59172, pp. V001T03A003; 11 pages
  • ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5022-0
  • Copyright © 2016 by ASME


Micro-combined heat and power (MCHP) systems generate heat and electricity concurrently, making them an ideal addition for home and small/medium business owners to generate their own electricity and replace conventional natural gas-burning boilers. Combining MCHP units with thermal and electric storage systems can aid in decoupling supply and demand of energy. In such a combined setup, MCHP units can run for prolonged periods when they not only cover existing demand but charge storage systems for deferred consumption of energy. In the present work, we analyzed such an MCHP system, with a particular focus on integrating electrical storage systems and the resulting degree of electrical self-sufficiency achievable under realistic working conditions. We implemented a system control logic to optimize MCHP unit run time geared towards taking energy storage system charging levels into account. We demonstrate that an MCHP unit and electrical storage system can complement each other benefitting overall system performance. Separating days according to their respective degree of electrical self-sufficiency enabled us to identify supply composition characteristics that result in higher electrical load coverage by MCHP-generated electricity.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In