Full Content is available to subscribers

Subscribe/Learn More  >

Microwave Plasma Gasification for Enhanced Oil Recovery and Sustainable Waste Management

[+] Author Affiliations
Philip K. Panicker, Amani Magid

New York University in Abu Dhabi, Abu Dhabi, UAE

Paper No. ES2016-59630, pp. V001T02A010; 13 pages
  • ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5022-0
  • Copyright © 2016 by ASME


This paper presents qualitative evidence to support the application of microwave induced plasma gasification (MIPG) technology for converting municipal solid wastes (MSW) to syngas and to use it for enhanced oil recovery (EOR). The target for the case study of this paper is the United Arab Emirates, which is a major producer and exporter of petroleum. The main EOR method employed by the UAE’s oil companies is the miscible gas flooding method, whereby natural gas or carbon dioxide is injected into the oil reservoirs to boost the oil pressure, reduce the viscosity of the oil and to increase the pumping rates. UAE purchases natural gas for power production and EOR from its neighbor, Qatar, which makes the UAE a net importer of natural gas and a major consumer of energy, while reducing the national income from the oil sales. The UAE is looking at ways to boost its oil production and to reduce the usage of natural gas, including the injection of carbon dioxide, nitrogen and steam generated by concentrated solar power.

UAE and the other Arabian Gulf nations have some of the highest per capita rates of production of domestic waste. Landfilling is the prevalent form of waste disposal for industrial, commercial and residential waste. Incineration-type waste-to-energy power plants are being constructed, but they are not the most effective solution due to cost and environmental reasons.

This paper proposes a solution that covers the two problems with one technology, namely MIPG of MSW. MIPG is shown to be the most efficient method of gasification available, as it uses much less energy for producing and sustaining the plasma than other techniques, and produces a much cleaner syngas than thermochemical gasification schemes. The syngas can be used for electricity generation or for making fuels and raw materials in the Fischer-Tropsch or similar processes. In this proposal, MIPG will be used to turn MSW, sewage sludge and biomass wastes into syngas. A part of the syngas will be used to produce electricity to power the petroleum extraction processes, while the carbon dioxide formed in this combustion of syngas can be captured and used for EOR in deep oil wells, which also functions as a form of sequestration of carbon. In addition, syngas can be turned into methane and synthetic natural gas using the Fischer-Tropsch or Sabatier process and then pumped into the oil wells. Some of the petroleum extracted can also be gasified using the MIPG method for the production of synthetic natural gas. Thus, the dependence on natural gas imports will be eliminated, while also achieving zero landfill targets.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In