Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on Emissions of Hydrogen Enriched Diesel Engine With Varied Combustion Chamber Geometry

[+] Author Affiliations
Jyothi Us

GRIET, Hyderabad, India

K. Vijaya Kumar Reddy

JNTUH, Hyderabad, India

Paper No. ES2016-59164, pp. V001T02A003; 7 pages
  • ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5022-0
  • Copyright © 2016 by ASME


The depletion of fossil fuels and its emissions promoted the researchers to search for substitute fuels and their controlled combustion. Hydrogen is considered as one of the best fuels for internal combustion engines because of its unique combustion properties. Currently, there are very few commercial devices that utilize hydrogen combustion for the production of heat, which is mainly due to the limited availability of hydrogen fuel. As the accompanying environmental legislation will clearly favour clean technologies, the emergence of hydrogen as an energy carrier will modify this situation. To achieve controlled combustion, an attempt was made at investigating the effect of change of piston geometry on the emission characteristics of diesel engine enriched with hydrogen at optimum flow rate. Experiments were conducted to study the effect of varied piston bowl geometry on the emission characteristics of diesel engine enriched with hydrogen at a flow rate of 6 lpm on four stroke single cylinder diesel engine at constant speed of 1500 rpm for different loads. For flow rates above 6 lpm knocking tendency was observed due to raise in temperature and peak pressures with addition of hydrogen. The experiments were conducted with standard hemispherical, toroidal and re-entrant toroidal piston bowl geometry at 6 lpm flow rate of hydrogen duly ensuring the same compression ratio in all three cases. The emissions for diesel engine enriched with hydrogen in hemispherical combustion chamber at 6 lpm flow rate were reduced by 27.1%, 37.5% and 10.8% of unburnt hydrocarbons (UHC), Carbon monoxide (CO) and smoke density respectively when compared to diesel fuel alone operation at rated load. This is mainly due to high combustion temperatures which lead to complete burning of fuel and reduction in carbon content with addition of hydrogen. However, there was a 14% increase in oxides of Nitrogen (NOx) emission due to high combustion temperatures by hydrogen induction. With toroidal and reentrant geometry of the combustion chambers at 6 lpm flow rate of hydrogen, the emission parameters were further reduced notably. Further there is an increase in NOx emission was observed in dual fuel mode compared to standard piston due to high cylinder temperatures and pressures. The obtained results show that at part load conditions with enriched hydrogen, the percentage reduction of NOx emission was engine load dependent, being least increase at low loads and high increase at high loads. The reduction in emission particulates with varied combustion chamber bowl geometry was due to improved swirl motion of high turbulence of air in the combustion.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In