Full Content is available to subscribers

Subscribe/Learn More  >

Isothermal Rectangular Roughness Elements in a Rectangular Cavity Heated at Bottom

[+] Author Affiliations
M. Yousaf, S. Usman

Missouri University of Science & Technology, Rolla, MO

Paper No. ICONE24-60908, pp. V005T15A067; 9 pages
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 5: Student Paper Competition
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5005-3
  • Copyright © 2016 by ASME


The purpose of the present research was to explore the role of rectangular roughness elements during natural convection in a two-dimensional rectangular cavity. The computational algorithm was developed based on the single relaxation time Bhatnagr-Gross and Krook (BGK) model of lattice Boltzmann method (LBM). Rectangular roughness elements were located on the horizontal walls. The computational algorithm was validated against benchmark studies using different numerical techniques, and a good agreement was found to exist. The range of the Rayleigh (Ra) number was explored from 103 to 106 for a Newtonian fluid of Prandtl number equal to 1.0. The dimensionless amplitude (h/H) of roughness elements was fixed to 0.1, while the spacing between these elements was equal to twice their height. The maximum reduction in the average heat transfer was calculated to be 27 percent at Ra number 1×106.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In