0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of an Application of Two-Phase Flow Differential Pressure Measurement in Vertical Square Channel

[+] Author Affiliations
Ondrej Burian, Vaclav Dostal

Technical University in Prague, Praha, Czech Republic

Paper No. ICONE24-60684, pp. V005T15A049; 8 pages
doi:10.1115/ICONE24-60684
From:
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 5: Student Paper Competition
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5005-3
  • Copyright © 2016 by ASME

abstract

The experimental work described in this paper deals with an experimental research of two-phase flow focused on the study of thermal hydraulics of steam generating facilities for NPPs, like BWR reactors and steam generators. The results of this research can be used for development of new methods for the control and measurement of the operating parameters of these facilities at normal and abnormal operational conditions. Moreover the results are also applicable for a development of a method for a determination of two-phase flow regimes by pressure fluctuation analysis. The main idea of those methods is based on the measurement of pressure and pressure difference in steam-water mixture and their further analysis by mathematical methods of signal processing. Based on the results of these analysis, represented by statistical and frequency parameters of pressure signal, it is possible to determine other parameters of two-phase flow such as void fraction, slip ratio and flow regime of two-phase flow. This method may be applied to the steam generator, where it can be used for a measurement of a generated steam flow rate by the measurement of a differential pressure between two points located at the outer shell of the steam generator at steam-water mixture level. This method has several advantages, over other methods and might improve the total efficiency of the power plant. In this paper the validation method at low pressure is presented. For this experimental work an experimental facility was made consisting of 1.5 m tall square channel with the dimensions of 200 × 200 mm. This channel was equipped with electrical heaters with power of 9 kW in the bottom part and they serve for production of steam-water mixture. This facility was used for a measurement of an absolute pressure and a pressure difference of two-phase flow for various conditions — power and geometries of grid elements. A set of pressure data for every measurement was analyzed by basic statistical methods and results of those analyzes for various conditions were compared. This comparison was focused on the determination of dependencies among a parameters of analyzed pressure signal from a heater power and geometry of a grid which have significant influence on void fraction. The results of this comparison are presented and discussed in this paper as well as the method used for the statistical analysis. Further possibilities and limitation of this method are described, mainly the performance of the measurement instrumentation that has a significant influence on the final result. In the conclusion the applicability of this method for real power facilities and next direction of this research are discussed.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In