0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Temperature on Deposition Rate of Supersaturated Silicic Acid on Ca-Type Bentonite

[+] Author Affiliations
Tsuyoshi Sasagawa, Taiji Chida, Yuichi Niibori

Tohoku University, Sendai, Japan

Paper No. ICONE24-60468, pp. V005T15A032; 7 pages
doi:10.1115/ICONE24-60468
From:
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 5: Student Paper Competition
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5005-3
  • Copyright © 2016 by ASME

abstract

For the disposal system of high-level radioactive waste in Japan, Na-type bentonite is used as one of backfilling and buffer materials for preventing the migration of groundwater and radionuclide. However, the alteration to Ca-type bentonite will cause the degradation of the barrier performance. On the other hand, silicate minerals around the repository dissolve under the high alkaline condition of groundwater (about pH 13) altered by alkaline components leaching from cementitious materials used for the construction of the repository. Such high-concentration silicic acid becomes supersaturated with the decrease in pH by mixing with natural downstream groundwater (pH 8) because of the change in the solubility of silicic acid. So far, the authors have examined the deposition rates of supersaturated silicic acid on Ca-type bentonite under the condition of room temperature, showing the clogging effect of flow-paths with the deposition. However, the dynamic behaviors of silicic acid are much sensitive to temperature change. Therefore, the present study focuses on the effect of temperature on the deposition rate of silicic acid on Ca-type bentonite. As a result, in the range up to 323 K, the deposition of supersaturated silicic acid on Ca-type bentonite was promoted with the increase in temperature. This suggests that the deposition of silicic acid will clog the flow-paths in Ca-type bentonite in this temperature range.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In