0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Supercritical Water Flow in a 2x2 Rod Bundle Under Non-Uniform Heat Flux

[+] Author Affiliations
Marcin Rowinski, Yeng Ch. Soh, Timothy J. White

Nanyang Technological University, Singapore, Singapore

Ching Ch. Chieng, Jiyun Zhao

City University of Hong Kong, Hong Kong, Hong Kong

Paper No. ICONE24-60204, pp. V005T15A012; 5 pages
doi:10.1115/ICONE24-60204
From:
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 5: Student Paper Competition
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5005-3
  • Copyright © 2016 by ASME

abstract

Generation III/III+ nuclear reactors operate with working fluid under subcritical conditions (Tc = 647K, pc = 22.115MPa). The efficiency, limited by the ratio of source and sink temperatures, is restricted by operating below the critical temperature. The supercritical water reactors (SCWRs) are able to rise efficiency limit while operating at the supercritical conditions. The amount of energy carried by working fluid is higher leading to potential efficiency improvement of nearly 30% above current nuclear stations. Therefore, rendering nuclear energy as one of the most efficient decarbonized electrical energy sources with efficiency of 45% and capacity factor of ca. 90%. Typical capacity factors of competing wind turbines and solar PV cells reaches 45% and 15% while the efficiencies 50% and 45%, respectively.

In a subcritical reactor a uniform heat flux is generated due to relatively constant fuel moderation. However, due to a change of density during transition from sub- to supercritical conditions, the fuel moderation is uneven along the fuel rod and results in a non-uniform heat generation. The literature on SCWR neutronics suggests higher heat generation at the fuel channel entrance. In this paper we simulated for the first time such non-uniform heat flux generated in a SCWR, we analyze the impacts of such flux on the working medium flow and suggest ways to mitigate negative impacts of non-uniform heat flux.

The study was conducted with use of Computational Fluid Dynamics (CFD) software. Obtained results show that the shape of heat flux curve along the channel highly influences the wall temperature distribution along the fuel channel. The differences in maximum wall temperatures can be up to 200K for different curve’s shape. Moreover, the maximum wall temperature is always higher than in default case i.e. when uniform heat flux is applied. It is possible to control the wall temperature distribution by adjusting the shape of heat flux along the axis. Such adjustment can be made by using different enrichment levels along the fuel rod axis, unfortunately any change in power distribution caused rapid temperature increase at the upstream location.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In