Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Two-Phase Flows Simulation and Analysis of the Evolution of the Local Hydrogen Concentration in a PWR Nuclear Containment in the Event of a Severe Accident

[+] Author Affiliations
Alexandre Zanchetti, Hervé Cordier, Antonio Sanna

EDF, Villeurbanne, France

Mickael Hassanaly, Namane Mechitoua, Stéphane Mimouni

EDF, Chatou Cedex, France

Paper No. ICONE24-60844, pp. V004T13A018; 8 pages
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 4: Computational Fluid Dynamics (CFD) and Coupled Codes; Decontamination and Decommissioning, Radiation Protection, Shielding, and Waste Management; Workforce Development, Nuclear Education and Public Acceptance; Mitigation Strategies for Beyond Design Basis Events; Risk Management
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5004-6
  • Copyright © 2016 by ASME


The Fukushima accident reminded us of the possible consequences in terms of radiological release that can result from a hydrogen explosion in a nuclear power plant, and, specifically, within the containment of a water cooled reactor building. Some mitigation means against hydrogen hazards exist but performance improvements in numerical tools simulating thermal-hydraulic flows and hydrogen combustion are necessary to allow realistic assessments of severe accident consequences in the containment. In this context, EDF works on CFD simulation of hydrogen distribution in penalized conditions. After dealing with cases for which the water spray system was assumed to be unavailable, and so treated with single-phase CFD code [1] [2], the present paper content is now about simulation and analysis of the local hydrogen concentration in the case of a severe accident for which the water spray system is available. Numerical developments of a multi-phase CFD code (Neptune_CFD) and code validation lead to consistent simulations.

The numerical simulation performed by EDF confirms the favorable safety impact of water spray on pressure and temperature for a LOCA scenario occurring on a 1300 MWe Pressurized Water Reactor. Nevertheless, CFD results show that the activation of the spray system before hydrogen injection gives greater hydrogen concentration. So, in the future, to better assess hydrogen risk, EDF will perform computations at CFD taking into account the interaction between combustion and water sprays.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In