0

Full Content is available to subscribers

Subscribe/Learn More  >

A High Effective Parallel Method for the Coupling Between Neutronics and Thermal-Hydraulic

[+] Author Affiliations
Xiaomeng Dong, Zhijian Zhang, Zhaofei Tian, Lei Li, Guangliang Chen

Harbin Engineering University, Harbin, China

Paper No. ICONE24-60310, pp. V004T10A013; 7 pages
doi:10.1115/ICONE24-60310
From:
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 4: Computational Fluid Dynamics (CFD) and Coupled Codes; Decontamination and Decommissioning, Radiation Protection, Shielding, and Waste Management; Workforce Development, Nuclear Education and Public Acceptance; Mitigation Strategies for Beyond Design Basis Events; Risk Management
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5004-6
  • Copyright © 2016 by ASME

abstract

Multi-physics coupling analysis is one of the most important fields among the analysis of nuclear power plant. The basis of multi-physics coupling is the coupling between neutronics and thermal-hydraulic because it plays a decisive role in the computation of reactor power, outlet temperature of the reactor core and pressure of vessel, which determines the economy and security of the nuclear power plant. This paper develops a coupling method which uses OPENFOAM and the REMARK code. OPENFOAM is a 3-dimension CFD open-source code for thermal-hydraulic, and the REMARK code (produced by GSE Systems) is a real-time simulation multi-group core model for neutronics while it solves diffusion equations. Additionally, a coupled computation using these two codes is new and has not been done. The method is tested and verified using data of the QINSHAN Phase II typical nuclear reactor which will have 16 × 121 elements. The coupled code has been modified to adapt unlimited CPUs after parallelization. With the further development and additional testing, this coupling method has the potential to extend to a more large-scale and accurate computation.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In