Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Rewetting During Quenching of Hot Surface by Round Jet Impingement Using Al2O3–Water Nanofluids

[+] Author Affiliations
Avadhesh K. Sharma, Mayank Modak, Santosh K. Sahu

Indian Institute of Technology Indore, Madhya Pradesh, India

Paper No. ICONE24-60732, pp. V003T09A056; 7 pages
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 3: Thermal-Hydraulics
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5003-9
  • Copyright © 2016 by ASME


Impinging jet surface cooling is being used in many industrial and engineering applications due to their higher heat removal rate. Jet impingement is one of the methods to cool hot surfaces, especially in textile, metal and electronic industries. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. The usual water flow within a reactor core is bottom to top, parallel to the fuel rods. When a hot surface quenched at very high temperature using a jet of cold fluid, during the quenching the initial heat transfer is limited by film boiling. The effective cooling takes place only after the surface temperature is below the leidenfrost temperature.

In the present work an experimental investigation has been carried out to analyze the rewetting phenomenon of a hot vertical stainless steel foil by circular impinging jets of pure water and Al2O3–water nanofluids. The rewetting time and rewetting velocity in the form of dimensionless number (Peclet number) obtained from the thermal images obtained from infrared thermal imaging camera (A655sc, FLIR System). Experiments are performed for different Reynolds number (Re = 5000, 8000), and Al2O3–water nanofluids concentration (Φ = 0.15%, 0.6%)

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In