Full Content is available to subscribers

Subscribe/Learn More  >

Mathematical Models of Spacer Grids

[+] Author Affiliations
Alan B. Maskal, Fatih Aydogan

University of Idaho, Idaho Falls, ID

Paper No. ICONE24-60098, pp. V003T09A005; 11 pages
  • 2016 24th International Conference on Nuclear Engineering
  • Volume 3: Thermal-Hydraulics
  • Charlotte, North Carolina, USA, June 26–30, 2016
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5003-9
  • Copyright © 2016 by ASME


The fuel rods in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) cores are supported by spacer grids. Even though spacer grids add to the pressure loss in the reactor core, spacer grids have several benefits in Light Water Reactors (LWRs). Some of these benefits are: (i) increasing the turbulence at the bottom of the reactor core for better heat transfer in single phase region of the LWRs, (ii) improving the departure nucleate boiling ratio results for PWRs, and (iii) improving critical power ratio (CPR) values by increasing the thickness of film in annular flow regime in the top section of the reactor core of BWRs. Several mathematical models have been developed for single and two phase pressure loss across the grid spacer. Almost all of them significantly depend on Reynolds Number. Spacer designs have evolved (incorporating mixing vanes, springs, dimples, etc), resulting in the complexity of the analysis across the grid, all the models have been compared not only theoretically but also quantitatively. For the quantitative comparisons, this work compares the results of mathematical spacer models with experimental data of BWR Full Size Fine Mesh Bundle Tests (BFBT). The experimental data of BFBT provides very detailed experimental results for pressure drop by using several different boundary condition and detailed pressure drop measurements. Since one CT-scanner was used at the bundle exit and three X-ray densitometers were used for the chordal average void distribution at different elevations to generate the BFBT results, detailed two phase parameters have been measured in BFBT database. Two bundle types of BFBT, the current 8×8 type and the high burn-up 8×8 type, were simulated. Three combinations of radial and axial power shapes were tested: 1) beginning of cycle (BOC) radial power pattern/cosine axial power shape (the C2A pattern); 2) end of cycle (EOC) radial power pattern/cosine axial power shape (C2B pattern); and 3) beginning of cycle radial power pattern/inlet peaked axial power shape (C3 pattern) in BFBT. The pressure drop in BFBT database was measured in both single-phase flow and two-phase flow conditions that cover the normal operational behavior. BFBT database gives the three combinations of high burnup assemblies with different radial and axial power shapes, namely C2A, C2B and C3, which were utilized in the critical power measurements. There are two types of spacers in this program — ferrule type and grid type. Therefore, detailed experimental data of BFBT was used for analyzing mathematical models of spacer grid for various boundary conditions of BWR in this paper. It was observed and discussed that pressure drop values due to spacer models can be significantly different.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In