Field Full Scale Tests on Longitudinal Pipeline-Soil Interaction PUBLIC ACCESS

[+] Author Affiliations
Andrea Cappelletto, Roberto Tagliaferri

SNAM, S. Donato Milanese, Italy

Gianmario Giurlani

SNAM, Padova, Italy

Giuseppe Andrei

SNAM, Roma, Italy

Giuseppe Furlani, Giuseppe Scarpelli

University of Ancona, Ancona, Italy

Paper No. IPC1998-2090, pp. 771-778; 8 pages
  • 1998 2nd International Pipeline Conference
  • Volume 2: Design and Construction; Pipeline Automation and Measurement; Environmental Issues; Rotating Equipment Technology
  • Calgary, Alberta, Canada, June 7–11, 1998
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4023-8
  • Copyright © 1998 by ASME


Recent research on longitudinal pipe-soil interaction shows that traditional analysis models are inadequate and too conservative, especially when cohesive soils are involved. The practical implication for SNAM, whose network extends over the entire Italian territory where slow ground movements inducing longitudinal soil-pipe interaction are frequent, is that the management of the gas pipeline has to rely mainly on field measurements.

The correct assessment of the interaction forces was therefore included as an important part of a wider research program, whose aim is to perform pipe risk analysis by which the structural vulnerability for some SNAM typical scenarios can be quantified as a function of such parameters as the pipe section geometry, the type of soil, the burial depth, the length of pipeline section involved and the magnitude of the soil imposed displacements.

Experimental activities specifically regarding longitudinal, static, interaction problems were carried out; in particular pull-out tests were performed on two out of use pipelines, having two different diameters: 8” and 24”. For each site, four different test conditions were investigated where type and compaction state of the material surrounding the pipe varies. The behaviour of the pipe embedded in the original clayey backfill was compared to that observed after such fill was excavated and replaced around the pipe, to simulate conditions after standard stress relieving works. Different fills where then used, made of either granular soil or granulite; this latter was used in order to ascertain the possible benefits of using light artificial materials to mitigate soil-pipe interaction phenomena. Site testing was accompanied by a careful geotechnical investigation both in the field and in laboratory that included direct shear tests of interfaces using coated steel pipe specimens.

A comparison between the results obtained and the existing state of the art is presented. This comparison allowed to verify the effectiveness of some interpretative models, and in particular the convenience of adopting effective stress based models rather than pure cohesive ones (i.e. total stress), even in the case of clayey soils.

Copyright © 1998 by ASME
Topics: Pipelines , Soil
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In