Material Assessment of Canadian SAW Line-Pipes FREE

[+] Author Affiliations
D. K. Mak, W. R. Tyson

Materials Technology Laboratory, CANMET, Ottawa, ON, Canada

Paper No. IPC1998-2083, pp. 711-721; 11 pages
  • 1998 2nd International Pipeline Conference
  • Volume 2: Design and Construction; Pipeline Automation and Measurement; Environmental Issues; Rotating Equipment Technology
  • Calgary, Alberta, Canada, June 7–11, 1998
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4023-8
  • Copyright © 1998 by ASME


Eight pipes, manufactured between 1952 and 1981, have been collected from various Canadian pipeline companies and tested. They include six pipes from the field made in the 1950’s and 1960’s of X52 grade, one experimental pipe manufactured in the early 1970’s of X65 grade, and a modern clean steel of X70 grade manufactured in 1981. The steels have been characterized by chemical composition, grain size, yield and tensile strengths, notch toughness (Charpy V-notch absorbed energy), and fracture toughness (J-integral and crack-tip opening displacement). The modern steel has much lower carbon content and much smaller grain size compared to the pipes manufactured in the 1950’s and 1960’s. The former is a fully-killed controlled-rolled steel while the latter are semi-killed ferrite-pearlite steels.

All eight pipes have ferrite-pearlite microstructures, with the average grain size ranging from 4 to 14 μm. The transverse yield strength was found to be significantly higher (by about 20%) than the longitudinal yield strength. Notch toughness and fracture toughness were similar for pipes manufactured in the 1950’s and 1960’s. In comparison, the modern steel has much higher toughness and higher strength.

J-integral and CTOD δ were found to be related by J = m σyδ with m = 1.8 and σy the transverse yield strength. The J-integral at 0.2 mm crack growth was consistent with a linear correlation with the upper-shelf Charpy energy. All the steels in this study fractured by ductile tearing in slow loading in spite of the low toughness of the older steels. It is suggested that, in the absence of Charpy upper shelf data, a reasonable representative toughness for resistance to axial surface flaws propagating by ductile tearing is J = 120±15 kJ/m2.

Copyright © 1998 by ASME
Topics: Pipes
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In