Full-Scale Fracture Propagation Experiments: A Recent Application and Future Use for the Pipeline Industry PUBLIC ACCESS

[+] Author Affiliations
D. Michael Johnson, Peter S. Cumber

BG Technology Ltd., Loughborough, UK

Norval Horner, Lorne Carlson

Alliance Pipeline, Calgary, AB, Canada

Robert Eiber

Consultant Inc., Columbus, OH

Paper No. IPC2000-160, pp. V001T05A003; 8 pages
  • 2000 3rd International Pipeline Conference
  • Volume 1: Codes, Standards and Regulations; Design and Constructions; Environmental; GIS/Database Development; Innovative Projects and Emerging Issues
  • Calgary, Alberta, Canada, October 1–5, 2000
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4024-5
  • Copyright © 2000 by ASME


A full scale fracture propagation test facility has been developed to validate the design, in terms of the ability of the material to avert a propagating fracture, of a major new pipeline to transport gas 1800 miles from British Columbia in Canada to Chicago in the USA. The pipeline, being built by Alliance Pipeline Ltd, will transport rich natural gas, i.e. gas with a higher than normal proportion of heavier hydrocarbons, at a maximum operating pressure of 12,000 kPa. This gas mixture and pressure combination imposes a more severe requirement on the pipe steel toughness than the traditional operating conditions of North American pipelines. As these conditions were outside the validated range of models, two full-scale experiments were conducted to prove the design. This paper will provide details of the construction of the 367m long experimental facility at the BG Technology Spadeadam test site along with the key data obtained from the experiments. Evaluation of this data showed that the test program had validated Alliance’s fracture control design. The decompression data obtained in the experiments will be compared against predictions from a new decompression model developed by BG Technology. The use of the experimental facility and the model to support future developments in the pipeline industry, particularly in relation to the use of high strength steels, will also be discussed.

Copyright © 2000 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In