An Emerging Methodology of Slope Hazard Assessment for Natural Gas Pipelines PUBLIC ACCESS

[+] Author Affiliations
Z. Joe Zhou, Gregg O’Neil, Moness Rizkalla

TransCanada Pipelines Ltd., Calgary, AB, Canada

Bill Liu

Golder Associates Ltd., Calgary, AB, Canada

Paper No. IPC2000-159, pp. V001T05A002; 7 pages
  • 2000 3rd International Pipeline Conference
  • Volume 1: Codes, Standards and Regulations; Design and Constructions; Environmental; GIS/Database Development; Innovative Projects and Emerging Issues
  • Calgary, Alberta, Canada, October 1–5, 2000
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4024-5
  • Copyright © 2000 by ASME


TransCanada Pipelines Ltd. (TransCanada) operates approximately 37,000 km of natural gas gathering and transmission pipelines. Within the Alberta portion of this system there are almost 1100 locations where the pipeline(s) traverse slopes, primarily as the line approaches and exits stream crossings. In the past, the approach to managing the impact of slope movements on pipeline integrity has been reactive; site investigations and/or monitoring programs would only be initiated once the slope movements were sufficiently large so as to easily observe cracking or scarp development. In some cases these movements could lead to a pipeline rupture.

To move to a proactive hazard management approach and to optimize the maintenance expenditure, TransCanada has developed a new slope assessment methodology. The objective of this methodology is to establish a risk-ranked list of slopes upon which maintenance decisions can be based. Using only internal and public information on site conditions as input to predictive models for rainfall-ground movement and pipe-soil interaction, a probability of pipeline failure can be generated for each slope. Estimates of risk using a consequence-matrix approach enabled the compilation of a risk-ranked list of hazardous slopes.

This paper describes this methodology, and its implementation at TransCanada, and presents some of the results.

Copyright © 2000 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In