0

A Methodology to Maintain Pipeline Integrity at Water Crossings FREE

[+] Author Affiliations
Z. Joe Zhou, Alan Samchek, Moness Rizkalla

TransCanada Pipelines Ltd., Calgary, AB, Canada

Gary Beckstead, Jason Westmacott

AMEC Earth & Environmental Limited, Calgary, AB, Canada

Paper No. IPC2000-158, pp. V001T05A001; 8 pages
doi:10.1115/IPC2000-158
From:
  • 2000 3rd International Pipeline Conference
  • Volume 1: Codes, Standards and Regulations; Design and Constructions; Environmental; GIS/Database Development; Innovative Projects and Emerging Issues
  • Calgary, Alberta, Canada, October 1–5, 2000
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4024-5
  • Copyright © 2000 by ASME

abstract

As the pipeline system of TransCanada Pipelines Ltd. (TransCanada) ages, cover at water crossings is continuously being adjusted to dynamic changes in weather patterns and local water crossing hydraulic characteristics. In an increased asset base of over 37 000 km of pipeline, this creates challenges to find and remediate crossings with high risks while maintaining the integrity of the whole system. A methodology has been developed to address the increasing demands of fiscal responsibility and pipeline integrity. The Scour Hazard Database Model (SHDM) provides the necessary tool to provide solutions to both of these challenges. The SHDM provides a stand alone prioritisation tool that is updateable and transparent. It can alert TransCanada to both immediate and potential pipeline exposures, in order that reactive and proactive solutions can be initiated. The SHDM contains descriptive pipeline information, local hydrologic data, channel hydraulic information, and scour hazard logic for over 2350 river and creek crossings throughout Canada. This information is used to produce a final rating value for comparing the potential for vertical and lateral pipeline exposures at each crossing. The vertical scour logic considers age of the crossing, modelled scour, natural degradation and any remedial work to determine the rating value. The lateral erosion logic uses channel form, location, lateral cover distances between the thalweg and pipeline, stream power, age of the crossing, and any remedial work to develop the lateral scour rating value. Furthermore, the exposed pipes are evaluated based on the potential failure mechanisms to determine failure probability. Included in the failure analysis are lateral stability, impact of debris, and fatigue. The failure probability and the consequence of the failure are used to rank the crossings and identify the requirement for maintenance activities.

Copyright © 2000 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In