Characterizing Dynamic Crack-Resistance of Pipelines Using Laboratory-Scale Practices PUBLIC ACCESS

[+] Author Affiliations
Brian N. Leis

Battelle Energy Systems Group, Columbus, OH

Paper No. IPC2000-136, pp. V001T02A026; 12 pages
  • 2000 3rd International Pipeline Conference
  • Volume 1: Codes, Standards and Regulations; Design and Constructions; Environmental; GIS/Database Development; Innovative Projects and Emerging Issues
  • Calgary, Alberta, Canada, October 1–5, 2000
  • Conference Sponsors: Pipeline Division
  • ISBN: 978-0-7918-4024-5
  • Copyright © 2000 by ASME


The consequences of a dynamic fracture in a gas-transmission pipeline require that they be designed to avoid such incidents with great certainty. Because of the complexity of this fracture process, the only certain approach to determine fracture-arrest conditions involved full-scale experiments. As time passed empirically calibrated balance equations between the crack-driving conditions and the line-pipe steels crack-arrest capabilities were developed. Such models worked well until the introduction of high-toughness line pipe, for which to full-scale test predictions were non-conservative, and increasingly so as toughness increased. Problems with early CVN-based models led to development of alternative schemes.

This paper presents results of experiments done to evaluate plausible alternatives to the CVN practice, which rely on an impact test identical to or adapted from the drop-weight tear-test (DWTT). As this practice is comparable to that of the CVN practice save for using an up-scale specimen geometry, results are presented and contrasted for these test methods, for pipe grades from B to X70, and toughness from less than 10 J in excess of 300 J. Data are analyzed to reveal trends not typically reported for such testing. It is shown that there is no essential difference between data developed from the CVN and DWTT practices, provided the results are compared at similar levels of impact-machine excess-energy capacity. Further, it is shown that non-conservative predictions of full-scale test behavior for higher-toughness steels can be traced to using the early CVN-based models at toughness levels well outside the range of their empirical calibration.

Copyright © 2000 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In