Full Content is available to subscribers

Subscribe/Learn More  >

A Hybrid Numerical Model to Address Fluid Elastic Structure Interaction

[+] Author Affiliations
Manoj Kumar Gangadharan, Sriram Venkatachalam

Indian Institute of Technology, Madras, Chennai, India

Paper No. OMAE2016-54161, pp. V007T06A049; 7 pages
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: Ocean Engineering
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4998-9
  • Copyright © 2016 by ASME


Hydroelasticity is an important problem in the field of ocean engineering. It can be noted from most of the works published as well as theories proposed earlier that this particular problem was addressed based on the time independent/ frequency domain approach. In this paper, we propose a novel numerical method to address the fluid-structure interaction problem in time domain simulations. The hybrid numerical model proposed earlier for hydro-elasticity (Sriram and Ma, 2012) as well as for breaking waves (Sriram et al 2014) has been extended to study the problem of breaking wave-elastic structure interaction. The method involves strong coupling of Fully Nonlinear Potential Flow Theory (FNPT) and Navier Stokes (NS) equation using a moving overlapping zone in space and Runge kutta 2nd order with a predictor corrector scheme in time. The fluid structure interaction is achieved by a near strongly coupled partitioned procedure. The simulation was performed using Finite Element method (FEM) in the FNPT domain, Particle based method (Improved Meshless Local Petrov Galerkin based on Rankine source, IMPLG_R) in the NS domain and FEM for the structural dynamics part. The advantage of using this approach is due to high computational efficiency. The method has been applied to study the interaction between breaking waves and elastic wall.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In