Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Vertical Position Control of a Near-Surface Remotely Operated Vehicle in Regular Waves

[+] Author Affiliations
Xiaoyang Liang, Han Liu, Ning Ma, Xiechong Gu

Shanghai Jiao Tong University, Shanghai, China

Yoshiaki Hirakawa

Yokohama National University, Yokohama, Japan

Paper No. OMAE2016-54631, pp. V007T06A024; 7 pages
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: Ocean Engineering
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4998-9
  • Copyright © 2016 by ASME


Precise vertical positioning has a very significant impact on the accuracy and reliability of the Remotely Operated Vehicle (ROV) working process. This paper establishes an experimental system which is capable of controlling and measuring the vertical position of ROV. The control signal output system is developed by integrating certain modules such as video recording, image-analog-digital signal converting, timing depth calculating and force signal outputting modules. The effects of Proportional-Integral-Derivative (PID) method on ROV depth control in still water and under various regular waves was tested and compared. The causes of difference of control effect between in still water and in waves were analyzed. Giving insight into the hydrodynamic characteristics and consequent movement of ROV, a practical underwater vehicle maneuvering mathematical model was established. The space motion equations were set up to solve the underwater vehicle maneuvering problem. The effects acted on the carrier by the waves were analyzed in order to develop a feasible control strategy that is applicable to the practical operation. Unsatisfactory effects of thrust output are optimized with MATLAB simulation based on ITAE criterion, using the simplex method for re-tuning PID parameters. Experimental results show that the system for measuring and controlling the vertical position of the ROV is successful. With an appropriate time interval for data collecting, the ROV model’s vertical depth can be effectively determined by the program written in VB language in the still water and small wave height situation. While the wave height increases or the wave period changes, the program needs to be adjusted. Simulation results also show that the wave frequency response abates as the wave period decreases. Compared to the original PID parameters, the new ones can rapidly give response to the vertical position change and guarantee the stability of ROV depth controlling. It is of obvious importance to actual control of the underwater vehicles’ vertical movement with the help of mathematical optimization method for the controller parameters. The proposed controlling algorithm can be an alternative for other similar working conditions.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In