Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Assessment of Pipeline With Plain Dents Under Cyclic Pressure Loading Using Finite Element Method

[+] Author Affiliations
Michael Durowoju, Yongchang Pu, Simon Benson

Newcastle University, Newcastle Upon Tyne, UK

Julia Race

University of Strathclyde, Glasgow, UK

Paper No. OMAE2016-54863, pp. V005T04A042; 10 pages
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Pipelines, Risers, and Subsea Systems
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4996-5
  • Copyright © 2016 by ASME


One of the major challenges faced in fatigue assessment today is determining the stress concentration factor ‘SCF’ associated with the dents, which are used with appropriate SN curves to determine the fatigue life. This historically has been determined empirically or by using finite element analysis.

This paper presents finite element analysis on a parametric range of industry pipes (both offshore and onshore) to extract SCF data used for fatigue assessment. The parametric dataset focuses on the effects of pipe geometry, dent geometry, material properties and pressure cycling on the prediction of the fatigue life. This parametric dataset will eventually be used to develop an algorithm for fatigue prediction using an artificial neural network.

Two types of indenters (Dome and Bar) are used to simulate circumferential and longitudinal dents. Four different dent depths ranging from 2% d/D to 10% d/D are also simulated to investigate the effect of dent geometry. Four different pipe grades (X42, X65, X80 and X100) are analyzed to investigate the effect of pipe materials on dent fatigue. Similarly, eight pipes with different diameter to thickness ratio D/t ranging from 18–96 are analyzed to investigate the effect of pipe geometry. Stresses are computed at both 50% SMYS and 72% SMYS to investigate the effect of pressure variation.

The results from this study indicate that longitudinal dents have higher stress concentrations compared to circumferential dents of similar dent depth. Results also indicate that the re-round dent depth (i.e. dent depth after pressurization) increases with increasing D/t and increasing dent depth. Similarly, the pipe material has a major effect on the fatigue life. Pipes with higher material strength have higher stress concentration compared to pipes with lower strength of similar dent depth. The stress concentration factors SCF associated with the dents are then computed.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In