0

Full Content is available to subscribers

Subscribe/Learn More  >

Inelastic Analysis of the SENT Specimen of X80 Pipe for Strain Capacity Evaluation

[+] Author Affiliations
Woo-Yeon Cho, Ki-Seok Kim

POSCO, Incheon, Korea

Jae Hyuk Lee

DAEHEUNG Future Technology, Kyunggi-Do, Korea

Young-Cheol Yoon

Myongji College, Seoul, Korea

Paper No. OMAE2016-54340, pp. V005T04A034; 7 pages
doi:10.1115/OMAE2016-54340
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Pipelines, Risers, and Subsea Systems
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4996-5
  • Copyright © 2016 by ASME

abstract

Strain capacity of the X80 line pipe with girth weld has been frequently evaluated from the SENT (Single Edge Notch Tension) test for the strain-based design (SBD). Also, it can be predicted from CWPT (Curved Wide Plate Test) and full scale test, which demand much larger scale test environment and higher costs in comparison to SENT test. On this scenario, well-developed numerical scheme can be a very useful tool for the strain capacity evaluation. The numerical scheme should be equipped with appropriate material models and inelastic analysis procedure to simulate the nonlinear behavior of the SENT specimen; in fact, the SENT specimen is expected to properly describe the defect in the girth weld part by using a notch. In this paper, for the validation of tensile strain capacity (TSC) of X80 line pipe, a phenomenological model, which is based on the GTN (Gurson-Tvergaard-Needleman) model, is developed and verified through the comparison with experimental results. The material model is implemented in the commercial finite element program ABAQUS with the aid of the user-defined material module. Calibration of material parameters expressing elastic and plastic behaviors of base and weld metals are done on the basis of the round-bar and full thickness tensile test results, and then the finite element simulations for SENT tests are carried out to predict the TSC. To ensure the reliability of the nonlinear procedure, the predicted strain capacities are compared with the test results as well as those obtained by the conventional design formulae, which are established from statistical analysis of numerous line pipe test data; then application of the nonlinear procedure is extended to the CWPT simulation. In some cases, damping effect was introduced to improve the convergence of iterative nonlinear solution. As a result, the developed nonlinear procedure acquires reliability and accuracy enough to be applied to the strain-based design process. Thus, it is highly expected that the procedure can be used in various numerical evaluations of strain capacity of line pipes with girth welds.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In