Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Analysis of Flexible Pipes Under Compression: Influence of the Friction Coefficient

[+] Author Affiliations
Eduardo Ribeiro Malta, Clóvis de Arruda Martins

University of São Paulo, São Paulo, Brazil

Paper No. OMAE2016-54895, pp. V005T04A018; 14 pages
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Pipelines, Risers, and Subsea Systems
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4996-5
  • Copyright © 2016 by ASME


In order to study the compressive behavior of flexible pipes, a nonlinear Finite Element model was developed. This fully tridimensional model recreates a five layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape and a rigid inner nucleus. The friction coefficient is known as a key parameter in determining the instability response of flexible pipes tensile armor. Since the featured model includes all nonlinear frictional contacts between the layers, it has been used to conduct several experiments in order to investigate its influence on the response. This article includes a description of the Finite Element Model itself and a case study where the friction between the layers of the pipe is changed. The procedure of this analysis is here described, along with the results.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In