0

Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Analysis of Longitudinal Bending Collapse of Container Ship Considering Bottom Local Loads

[+] Author Affiliations
Akira Tatsumi, Masahiko Fujikubo

Osaka University, Suita, Japan

Paper No. OMAE2016-54747, pp. V003T02A094; 9 pages
doi:10.1115/OMAE2016-54747
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Structures, Safety and Reliability
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4994-1
  • Copyright © 2016 by ASME

abstract

The purpose of this research is to clarify the effect of bottom local loads on the hull girder collapse behavior of large container ship (8000TEU class) A 1/2+1+1/2 hold model of container ship is analyzed using implicit finite element method. The results reveal two major causes of reduction of hull girder ultimate strength due to local loads. One is biaxial compressive stresses induced at outer bottom. Thus, smaller hogging moment can induce a collapse of bottom panels. The other is a reduction of effectiveness of inner bottom that is on the tension side of local bending. As a result, the container ship attains hull girder ultimate strength with smaller spread of collapse region compared to that under pure bending.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In