0

Full Content is available to subscribers

Subscribe/Learn More  >

Structural Fatigue Assessment of Offshore Platform Considering the Effect of Nonlinear Drag Force

[+] Author Affiliations
Weichen Ding

DMAR Engineering Inc., Qingdao, China

Liang Pang

Ocean University of China, Qingdao, China

Paper No. OMAE2016-54870, pp. V003T02A032; 8 pages
doi:10.1115/OMAE2016-54870
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Structures, Safety and Reliability
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4994-1
  • Copyright © 2016 by ASME

abstract

Fatigue assessment for jacket platforms is an indispensable practical issue. Because of the small-scale leg diameter, these structures are often drag dominated and wave-induced force in these structures can be tackled by using either linear or nonlinear form of Spectral Morison Equation. However, it is really complicated and difficult to incorporate nonlinear form of the Morison Equation to acquire the spectral density of the wave force, which is an important step of fatigue estimation. In this paper, in order to estimate the influence of nonlinear effect in wave force, fatigue assessments containing nonlinear effect for the fixed offshore structure are presented. Firstly, shallow-water jacket model locating at a water depth of 20 m is established and involved in calculation. Besides, for the sake of validating the effectiveness of the nonlinear term, the linear and nonlinear form of wave-induced force spectral densities are calculated by the Morison Equation in frequency domain. Secondly, the fatigue life of the jacket platform is assessed in time domain, where time-history of wave force can be obtained by transforming the linear or nonlinear wave force spectral densities from frequency domain to time domain. After the contrast of acquired fatigue life, the comparative results can indicate that the nonlinear drag force contributes a 14% fatigue damage to the total and the influences of the nonlinear term cannot be ignored for the jacket model.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In