Full Content is available to subscribers

Subscribe/Learn More  >

The Velocity Field Underneath Linear and Nonlinear Breaking Rogue Waves

[+] Author Affiliations
Alberto Alberello, Alexander V. Babanin, Jung H. Lee, Alessandro Toffoli

Swinburne University of Technology, Hawthorn, Australia

Amin Chabchoub

University of Tokyo, Kashiwa, Japan

Jason P. Monty, John Elsnab

University of Melbourne, Parkville, Australia

Elzbieta M. Bitner-Gregersen

DNV GL AS, Høvik, Norway

Paper No. OMAE2016-54481, pp. V003T02A001; 9 pages
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Structures, Safety and Reliability
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4994-1
  • Copyright © 2016 by ASME


During the past decades, a large number of waves of extreme height and abnormal shape, also known as freak or rogue waves, have been recorded in the ocean. Velocities and related forces can be enormous and jeopardise the safety of marine structures. Here, we present an experimental study devoted to investigate the velocity field underneath a breaking rogue wave. The latter is replicated in the laboratory by means of dispersive focussing methods such as the New Wave Theory and nonlinear focussing techniques based on the Nonlinear Schrödinger equation. While the former is basically a liner method, the nonlinear focussing fully accounts for the dynamical evolution of the wave field. Experiments were carried out in the Extreme Air-Sea Interaction flume of the University of Melbourne using a Particle Image Velocimetry (PIV) system to measure the velocity field below the water surface. Measurements show that the mechanism of generation affects the shape of the breaking waves as well as the kinematic field and associated hydrodynamic forces. Particularly, the New Wave Theory leads to higher velocities and a more energetic breaker than the nonlinear focussing.

Copyright © 2016 by ASME
Topics: Waves



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In