0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Effects of Turbulence Modeling on the Fluid-Structure Interaction of a Rigid Cylinder

[+] Author Affiliations
Guilherme Feitosa Rosetti, André Luís Condino Fujarra

University of São Paulo, São Paulo, Brazil

Guilherme Vaz

MARIN, Wageningen, Netherlands

Paper No. OMAE2016-54989, pp. V002T08A078; 14 pages
doi:10.1115/OMAE2016-54989
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: CFD and VIV
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4993-4
  • Copyright © 2016 by ASME

abstract

The cylinder flow is a canonical problem for Computational Fluid Dynamics (CFD), as it can display several of the most relevant issues for a wide class of flows, such as boundary layer separation, vortex shedding, flow instabilities, laminar-turbulent transition and others. Several applications also display these features justifying the amount of energy invested in studying this problem in a wide range of Reynolds numbers. The Unsteady Reynolds Averaged Navier Stokes (URANS) equations combined with simplifying assumptions for turbulence have been shown inappropriate for the captive cylinder flow in an important range of Reynolds numbers. For that reason, recent improvements in turbulence modeling has been one of the most important lines of research within that issue, aiming at better prediction of flow and loads, mainly targeting the three-dimensional effects and laminar-turbulent transition, which are so important for blunt bodies. In contrast, a much smaller amount of work is observed concerning the investigation of turbulent effects when the cylinder moves with driven or free motions. Evidently, larger understanding of the contribution of turbulence in those situations can lead to more precise mathematical and numerical modeling of the flow around a moving cylinder. In this paper, we present CFD calculations in a range of moderate Reynolds numbers with different turbulence models and considering a cylinder in captive condition, in driven and in free motions. The results corroborate an intuitive notion that the inertial effects indeed play very important role in determining loads and motions. The flow also seems to adapt to the motions in such a way that vortices are more correlated and less influenced by turbulence effects. Due to good comparison of the numerical and experimental results for the moving-cylinder cases, it is observed that the choice of turbulence model for driven and free motions calculations is markedly less decisive than for the captive cylinder case.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In