0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study About the Influence of the Free End Effects on Vortex-Induced Vibration of Floating Cylinder With Low Aspect of Ratio

[+] Author Affiliations
Dennis M. Gambarine, Felipe P. Figueiredo, Rodolfo T. Gonçalves

University of São Paulo, São Paulo, Brazil

André L. C. Fujarra

Federal University of Santa Catarina, Joinville, Brazil

Paper No. OMAE2016-54632, pp. V002T08A073; 8 pages
doi:10.1115/OMAE2016-54632
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: CFD and VIV
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4993-4
  • Copyright © 2016 by ASME

abstract

Experiments regarding free-end effects on vortex-induced vibration (VIV) of floating circular cylinders with low aspect ratio were carried out in a towing tank. Four cylinders with low aspect of ratio, L/D = 2 (Length / Diameter) were tested with different free end corner shape types, namely by the relation between chamfer rounding radius (r) divided by the radius of cylinder (R) (r/R = 0.0, 0.25, 0.5 and 1.0). For the initial case, r/R = 0.0 represents flat tip and r/R = 1.0 the hemispherical tip. The aims were to understand the effect of different free-end types on VIV behavior of cylinders. The floating circular cylinders, i.e. unit mass ratio m* = 1(structural mass/displaced fluid mass) were elastically supported by a set of linear springs to provide low structural damping on the system and allow six degrees of freedom. The range of Reynolds number covered 3,000 ≤ Re ≤ 20,000. To conclude, cylinder with r/R = 0.25, shows lower amplitudes in transverse direction. The same occurs for the cylinder r/R = 0, but for amplitudes of vibration in in-line direction. Behaviors of the vibration frequencies in in-line and transverse direction don’t have significantly differences. Regarding force coefficient, flat tip cylinder (r/R = 0) presents higher values compared to the others however, for the lift coefficient, results converge in similar values for the same velocities that were observed higher transverse amplitudes. The visualization experiments show an expressive reduction of the recirculation bubble for r/R = 0.5 model compared with the flat tip, can therefore justify the lower values for this model obtained in draft amplitudes and drag coefficient compared with the flat tip model.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In