0

Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Nonlinear Heave Damping Model for Spar With Heave Plate Using Free Decay Tests

[+] Author Affiliations
Mahesh J. Rao, S. Nallayarasu, S. K. Bhattacharyya

IIT Madras, Chennai, India

Paper No. OMAE2016-54404, pp. V002T08A052; 9 pages
doi:10.1115/OMAE2016-54404
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: CFD and VIV
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4993-4
  • Copyright © 2016 by ASME

abstract

Linear damping models have been used in the past for solving floating body dynamics, especially for simple geometries such as spar. However, due to the addition of heave damping elements to spar such as heave plate, complex flow around these elements may change the relationship between damping and velocity of the body to nonlinear. The damping plays a major role in accurate determination of motion response of spars, especially the heave. Free decay tests have been carried out for spar with and without heave plate in calm water condition. The Computational Fluid Dynamics (CFD) simulation of heave decay is carried out using ANSYS FLUENT and validated by free decay test results using scale models. Mesh convergence study has been conducted to determine the optimum mesh size. The heave motion obtained from CFD are used to derive the damping terms by matching the heave motion obtained using equation of motion by changing the damping term with linear, quadratic and the combination of linear and quadratic. The heave motion obtained from linear damping model matches well with that obtained from measured motion and CFD simulation for spar without heave plate. However, the linear / quadratic damping models alone are not suitable for spar with heave plate. Hence a combination of linear and quadratic damping model is proposed for spar with heave plate. The heave motion computed using a combination of linear and quadratic damping model matches well with that obtained from experimental studies and CFD simulations thus indicating the complexity of flow around heave plate in comparison to the spar alone. Further, the vortices around the spar models obtained from CFD simulations are also presented and discussed with regard to the higher order damping.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In