0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of Water Impact and Entry of a Free Falling Wedge Using CFD Simulations

[+] Author Affiliations
Arun Kamath, Hans Bihs, Øivind A. Arnsten

Norwegian University of Science and Technology, Trondheim, Norway

Paper No. OMAE2016-54675, pp. V002T08A020; 8 pages
doi:10.1115/OMAE2016-54675
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: CFD and VIV
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4993-4
  • Copyright © 2016 by ASME

abstract

Many offshore constructions and operations involve water impact problems such as water slamming onto a structure or free fall of objects with subsequent water entry and emergence. Wave slamming on semi-submersibles, vertical members of jacket structures, crane operation of a diving bell and dropping of free fall lifeboats are some notable examples. The slamming and water entry problems lead to large instantaneous impact pressures on the structure, accompanied with complex free surface deformations. These need to be studied in detail in order to obtain a better understanding of the fluid physics involved and develop safe and economical design. In the special case of free-fall lifeboats, model testing can be expensive and time consuming. Here, numerical modelling can make useful contributions to the design process. The slamming of a free falling body into water involves several complex hydrodynamic features after its free-fall such as water entry, submergence into water and resurfacing. The water entry and submergence lead to formation of water jets and air cavities in the water resulting in large impact forces on the object. In order to evaluate the forces and hydrodynamics involved, the numerical model should be able to account for the complex free surface features, the instantaneous pressure changes around the lifeboat and accurately evaluate the loads on the lifeboat. As a step towards simulating free-fall lifeboats, water entry of a free-falling wedge into water is studied in this paper using a CFD model. The vertical velocity of the wedge during the process of free fall and water impact are calculated for different cases and the free surface deformations are captured in detail. Numerical results are compared with experimental data and a good agreement is seen. The open-source CFD model REEF3D is used in this study. The model solves the Reynolds-Averaged Navier-Stokes equations to evaluate the fluid flow. The convective terms are discretized using a 5th-order conservative finite difference WENO scheme. Time discretization is carried out using a 3rd-order Runge-Kutta scheme. Pressure discretization is carried out using Chorins projection method. The Poisson pressure equation is solved using a pre-conditioned BiCGStab algorithm. A sharp representation of the free surface is obtained using the level set method. The falling wedge is represented using the level set paradigm as well, avoiding the need for re-meshing during the simulation. Turbulence modeling is carried out using the k-ω model. Computational performance of the numerical model is improved by parallel processing using the MPI library.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In