0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Seabed Boundary Layer Flow Around Monopile and Gravity-Based Wind Turbine Foundations

[+] Author Affiliations
Muk Chen Ong

University of Stavanger, Stavanger, Norway

Eirik Trygsland, Dag Myrhaug

Norwegian University of Science and Technology, Trondheim, Norway

Paper No. OMAE2016-54643, pp. V002T08A011; 8 pages
doi:10.1115/OMAE2016-54643
From:
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: CFD and VIV
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4993-4
  • Copyright © 2016 by ASME

abstract

Computational fluid dynamics (CFD) has been used to study the seabed boundary layer flow around monopile and gravity-based offshore wind turbine foundations. The gravity-based foundation has a hexagonal bottom slab (bottom part). The objective of the present study is to study the flow structures around the bottom-fixed offshore wind turbine foundations in order to provide essential hydrodynamic coefficients for engineering design and an assessment of potential scour erosion. Three-dimensional CFD simulations have been performed using Spalart-Allmaras Delayed Detached Eddy Simulation (SADDES) at a Reynolds number 4×106 based on the free stream velocity and the diameter of the monopile foundation, D. A seabed boundary layer flow with a boundary layer thickness D is assumed for all the simulations. Vortical structures, time-averaged results of velocity distributions and bed shear stresses are computed. The numerical results are discussed by studying the difference in flows around the monopile and the gravity-based foundations. A distinct horseshoe vortex is found in front (upstream side) of the monopile foundation. Two small horseshoe vortices are found in front of the hexagonal gravity-based foundation, i.e. one is on the top of the bottom slab and one is near the seabed in front of the bottom slab. The horseshoe vortex size for the hexagonal gravity-based foundation (computed as the distance from the separation point to the foundation surface along the centerline on the seabed), is found to be smaller than that for the monopile foundation. The effects of different foundation geometries on destroying the formation of horseshoe vortices (which is the main cause of scour problems) are discussed.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In