Full Content is available to subscribers

Subscribe/Learn More  >

On the Numerical Prediction of Transitional Flows With Reynolds-Averaged Navier-Stokes and Scale-Resolving Simulation Models

[+] Author Affiliations
Filipe S. Pereira, Guilherme Vaz

Maritime Research Institute of the Netherlands Academy, Wageningen, Netherlands

Luís Eça

University of Lisbon, Lisbon, Portugal

Sébastien Lemaire

École Centrale de Lyon, Écully, France

Paper No. OMAE2016-54414, pp. V002T08A007; 11 pages
  • ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: CFD and VIV
  • Busan, South Korea, June 19–24, 2016
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4993-4
  • Copyright © 2016 by ASME


The present work investigates the transitional flow around a smooth circular cylinder at Reynolds number Re = 140,000. The flow is resolved using the viscous-flow solver ReFRESCO, and distinct mathematical models are applied to assess their ability to handle transitional flows. The selected mathematical models are the Reynolds-Averaged Navier-Stokes equations (RANS), Scale-Adaptive Simulation (SAS), Delayed Detached-Eddy Simulation (DDES), eXtra Large-Eddy Simulation (XLES) and Partially-Averaged Navier-Stokes (PANS) equations. The RANS equations are supplemented with the k–ω Shear-Stress Transport (SST) with and without the Local Correlation Transition Model (LCTM). The numerical simulations are carried out using structured grids ranging from 9.32 × 104 to 2.24 × 107 cells, and a dimensionless time-step of 1.50 × 10−3. As expected, the outcome demonstrates that transition from laminar to turbulent regime is incorrectly predicted by the k–ω SST model. Transition occurs upstream of the flow separation, which is typical of the supercritical regime and so the flow physics is incorrectly modelled. Naturally, all Scale-Resolving Simulation (SRS) models that rely on RANS to solve the boundary-layer, called hybrid models, will exhibit a similar trend. On the other hand, mathematical models capable to resolve part of the turbulence field in the boundary layer (PANS) lead to a better agreement with the experimental data. Furthermore, the k–ω SST LCTM is also able to improve the modelling accuracy when compared to the k–ω SST. Therefore, it might be a valuable engineering tool if its computational demands are considered (in the RANS context). Therefore, the results confirm that the choice of the most appropriate mathematical model for the simulation of turbulent flows is not straightforward and it may depend on the details of the flow physics.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In