Full Content is available to subscribers

Subscribe/Learn More  >

Parameter Study on 3D-Printing Graphene Oxidize Based on Directional Freezing

[+] Author Affiliations
Feng Zhang, Feng Yang, Chi Zhou

University at Buffalo, Buffalo, NY

Dong Lin

Kansas State University, Manhattan, KS

Paper No. MSEC2016-8846, pp. V003T08A010; 11 pages
  • ASME 2016 11th International Manufacturing Science and Engineering Conference
  • Volume 3: Joint MSEC-NAMRC Symposia
  • Blacksburg, Virginia, USA, June 27–July 1, 2016
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4991-0
  • Copyright © 2016 by ASME


Graphene is one of the most promising carbon nanomaterial due to its excellent electrical, thermal, optical and mechanical properties. However, it is still very challenging to unlock its exotic properties and widely adopt it in real-world applications. In this paper, we introduces a new 3D graphene structure printing approach with pure graphene oxide material, better inter-layer bonding, and complex architecture printing capability. Various parameters related to this novel process are discussed in detail in order to improve the printability, reliability and accuracy. We have shown that the print quality largely depends on the duty cycle of print head, applied pressure and travel velocity during printing. A palette of printed samples are presented to demonstrate the effectiveness of the proposed technique along with the optimal parameter settings. The proposed process proves to be a promising 3D printing technique for fabricating multi-scale nanomaterial structures. The theory revealed and parameters investigated herein are expected to significantly advance the knowledge and understanding of the fundamental mechanism of the proposed directional freezing based 3D nano printing process. Furthermore the outcome of this research has the potential to open up a new avenue for fabricating multi-functional nanomaterial objects.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In