Full Content is available to subscribers

Subscribe/Learn More  >

In Situ Sensor-Based Monitoring and Computational Fluid Dynamics (CFD) Modeling of Aerosol Jet Printing (AJP) Process

[+] Author Affiliations
Roozbeh (Ross) Salary, Jack P. Lombardi, M. Samie Tootooni, Ryan Donovan, Prahalad K. Rao, Mark D. Poliks

State University of New York at Binghamton, Binghamton, NY

Paper No. MSEC2016-8535, pp. V002T04A049; 13 pages
  • ASME 2016 11th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Blacksburg, Virginia, USA, June 27–July 1, 2016
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4990-3
  • Copyright © 2016 by ASME


The aim of this paper is to demonstrate a pathway for in situ real-time monitoring and closed-loop control of aerosol jet printing (AJP) process. To achieve this aim, we instrumented an Optomec AJ-300 aerosol jet printer with multiple temporal and image-based sensors. Experiments were conducted by varying the sheath gas flow rate (ShGFR) and, subsequently, the line morphology was acquired online using a CCD camera mounted coaxial to the nozzle (perpendicular to the platen). To assess the line morphology, we devised a novel digital image processing method that quantifies aspects of line morphology, such as line density, overspray, continuity, edge smoothness, etc. As a result, an optimal process window was established. Next, the underlying aerodynamic phenomena that influence the line morphology are explained based on a two dimensional computational fluid dynamics (2D-CFD) model. Thus, the image processing approach proposed in this work can be used to detect incipient process drifts, while the CFD model will be valuable to suggest the appropriate corrective action to bring the process back in control. We further validate that there is a good agreement between the online and offline results with respect to the quantified morphology of the lines.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In